如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
已知曲线C:(t为参数), C:(为参数)。 (Ⅰ)化C,C的方程为普通方程,并说明它们分别表示什么曲线; (II)若C上的点P对应的参数为,Q为C上的动点,求中点到直线(t为参数)距离的最大值。
在极坐标系中,直线的方程为,在直角坐标系中,圆的参数方程为. (Ⅰ)判断直线与圆的位置关系; (Ⅱ)设点是曲线上的一个动点,若不等式有解,求的取值范围.
设是互不相等的正数, 求证:(Ⅰ) (Ⅱ)
、如图,是的高,是外接圆的直径,圆半径为,, 求的值。
(本小题满分12分)设函数. (Ⅰ)若函数在定义域上是单调函数,求的取值范围; (Ⅱ)若,证明对于任意的,不等式.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号