(本小题满分12分)
已知数列满足
(Ⅰ)欲求的通项公式,若能找到一个函数
(A、B、C未必常数),把递推
关系变成
后,就容易求出
的通项了.请问:这样的
存在吗?
的通项公式是什么?
(Ⅱ)记,若不等式
对任意
都成立,求实数
的
取值范围。
(满分12分)是等差数列
的前
项和,
,
。
(1)求的通项公式;
(2)设(
是实常数,且
),求
的前
项和
。
(满分12分)设命题P:关于的不等式:
的解集是R,命题Q:函数
的定义域为R,若P或Q为真,P且Q为假,求
的取值范围。
(满分10分)在△ABC中,角A,B,C所对的边分别为,已知
。
(1)求A的大小;
(2)如果,
,求△ABC的面积。
已知函数.
(1)若函数在
处取极值,求
的值;
(2)如图,设直线将坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域(不含边界),若函数
的图象恰好位于其中一个区域内,判断其所在的区域并求对应的
的取值范围;
(3)比较与
的大小,并说明理由.
如图所示,在棱长为2的正方体中,点
分别在棱
上,满足
,且
.
(1)试确定、
两点的位置.
(2)求二面角大小的余弦值.