已知函数f(x)=ax2-|x|+2a-1(a为实常数).
(1)若a=1,作函数f(x)的图象;
(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设h(x)=,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.
如图, 为圆锥的顶点, 是圆锥底面的圆心, 是底面的内接正三角形, 为 上一点,∠ APC=90°.
(1)证明:平面 PAB⊥平面 PAC;
(2)设 DO= ,圆锥的侧面积为 ,求三棱锥 P− ABC的体积.
的内角A,B,C的对边分别为a,b,c.已知B=150°.
(1)若a= c,b=2 ,求 的面积;
(2)若sinA+ sinC= ,求C.
某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为 A , B , C , D四个等级.加工业务约定:对于 A级品、 B级品、 C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 |
A |
B |
C |
D |
频数 |
40 |
20 |
20 |
20 |
乙分厂产品等级的频数分布表
等级 |
A |
B |
C |
D |
频数 |
28 |
17 |
34 |
21 |
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
已知函数 .
(1)当 时,求不等式 的解集;
(2)若 ,求 a的取值范围.
已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2:
(t为参数).
(1)将C1,C2的参数方程化为普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.