已知函数f(x)=x3-ax2-3x.
(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是f(x)的极值点,求
f(x)在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c, ,z的26个字母(不分大小写),依次对应1,2,3, ,26这26个自然数,见如下表格:
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
n |
o |
p |
q |
r |
s |
t |
u |
v |
w |
x |
y |
z |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
给出如下变换公式:
将明文转换成密文,如,即
变成
;如
,即
变成
.
(1)按上述规定,将明文译成的密文是什么?
(2)按上述规定,若将某明文译成的密文是,那么原来的明文是什么?
已知是方程
的一个根(
为实数).
(1)求的值;
(2)试说明也是方程的根.
某车间加工零件的数量与加工时间
的统计数据如表:
零件数![]() |
10 |
20 |
30 |
加工时间![]() |
21 |
30 |
39 |
现已求得上表数据的回归方程中的
值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为()
A.112分钟 B.102分钟 C.94分钟 D.84分钟
已知函数.
(1)若,求曲线
在点
处的切线方程;
(2)若函数在其定义域内为增函数,求正实数
的取值范围;
(3)设函数,若在
上至少存在一点
,使得
>
成立,求实数
的取值范围.
请你设计一个包装盒,如图所示,是边长为
的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得
四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,
在
上是被切去的等腰直角三角形斜边的两个端点,设
.
(1)若广告商要求包装盒侧面积最大,试问
应取何值?
(2)若广告商要求包装盒容积最大,试问
应取何值?并求出此时包装盒的高与底面边长的比值.