已知函数f(x)=x3-ax2-3x.
(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是f(x)的极值点,求
f(x)在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
定长为3的线段两端点
分别在
轴,
轴上滑动,
在线段
上,且
(1)求点的轨迹
的方程.
(2)设过且不垂直于坐标轴的直线
交轨迹
与
两点.问:线段
上是否存在一点
,使得以
为邻边的平行四边形为菱形?作出判断并证明.
已知过点(1,1)且斜率为
(
)的直线
与
轴分别交于
两点,分别过
作直线
的垂线,垂足分别为
求四边形
的面积的最小值.
在中,点M是BC的中点,
的三边长是连续三个正整数,且
(I)判断的形状;
(II)求的余弦值。
已知函数.
(1)证明:对定义域内的所有x,都有.
(2)当f(x)的定义域为[a+, a+1]时,求f(x)的值域。.
(3)设函数g(x) = x2+| (x-a) f(x) | , 若,求g(x)的最小值.
设M={x|},
N={x|},求M∩N≠
时a的取值范围.