(本小题满分12分)
已知函数.
(Ⅰ)求函数的图象在点
处的切线
的方程;
(Ⅱ)求函数区间
上的最值.
(本小题满分12分)已知函数f(x)=;
(Ⅰ)证明:函数f(x)在上为减函数;
(Ⅱ)是否存在负数,使得
成立,若存在求出
;若不存在,请说明理由。
(本小题满分12分)已知函数.
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)已知内角
的对边分别为
,且
,若向量
与
共线,求
的值.
(本题10分)中心在原点,焦点在x轴上的椭圆C上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过 椭圆C的右顶点.求证:直线l过定点,并求该定点的坐标.
(本题10分)设.若
在
存在单调增区间,求a的取值范围.
(本题8分) 已知直线被抛物线C:
截得的弦长
.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若抛物线C的焦点为F,求三角形ABF的面积.