(本小题满分14分)
已知椭圆方程为(
)
,抛物线方程为
.过抛物线的焦点作
轴的垂线,与抛物线在第一象限的交点为
,抛物线在点
处的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设为椭圆上的动点,由
向
轴作垂线
,垂足为
,且直线
上一点
满足
,求点
的轨迹方程,并说明轨迹是什么曲线?
直线与坐标轴的交点是圆
一条直径的两端点.
(1)求圆的方程;
(2)圆的弦
长度为
且过点
,求弦
所在直线的方程.
已知直三棱柱的所有棱长都相等,且
分别为
的中点.
(1)求证:平面平面
;
(2)求证:平面C平面
.
已知数列{an}的前三项与数列{bn}的前三项相同,且a1+2a2+22a3+…+2n-1an=8n对任意n∈N*都成立,数列{bn+1-bn}是等差数列.
(1)求数列{an}与{bn}的通项公式;
(2)是否存在k∈N*,使得(bk-ak)∈(0,1)?请说明理由.
已知,△ABC的三个内角为A,B,C,m=(sin B+sin C,0),n=(0,sin A)且
|m|2-|n|2=sin Bsin C.
(1)求角A的大小
(2)求sin B+sin C的取值范围.
设某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用/建筑总面积)