(本小题满分12分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
(本小题满分12分)已知是递增的等差数列,满足
(1)求数列的通项公式和前n项和公式;
(2)设数列对
均有
…+
成立,求数列
的通项公式.
(本小题满分12分)如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,,AE∥C
D,DC=AC=2AE=2.
(Ⅰ)求证:平面BCD平面ABC
(Ⅱ)求证:AF∥平面BDE;
(Ⅲ)求四面体B-CDE的体积.
(本小题满分12分)
已知函数且函数f(x)的最小正周期为
.
(1)求函数f(x)的解析式;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c.若f(B)=1,且
,试求
的值.
(本小题满分14分)已知定义在实数集上的函数N
,其导函数记为
,且满足
,其中
、
、
为常数,
.设函数
R且
.
(Ⅰ)求实数的值;
(Ⅱ)若函数无极值点,其导函数
有零点,求m的值;
(Ⅲ)求函数在
的图象上任一点处的切线斜率k的最大值.