(本小题12分)
已知向量
,
,设函数
.
①求函数
的最小正周期及在
上的最大值;
②已知
的角A、B、C所对的边分别为a、b、c,A、B为锐角,
,
,又
,求a、b、c的值.
设数列
满足
.
(I)求数列
的通项;
(II)设
,求数列
的前
项和
.
的内角
的对边分别为
,且
.
(I)求角
的大小;
(II)若
最大边的边长为
,且
,求最小边长.
已知射线
和点
,试在
上求一点
使得
所在直线
和
、直线
在第一象限围成的面积达到最小值,并写出此时直线
的方程。
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上。
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn;
(3)设cn=an·bn,求数列{cn}的前n项和Tn
为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤。