游客
题文

一个袋中有1个白球和4个黑球,每次从中任取一个球,每次所取的球放回,直到取得白球为止,但摸球次数不超过5次,求取球次数的分布列

科目 数学   题型 解答题   难度 较易
知识点: 正交试验设计方法
登录免费查看答案和解析
相关试题

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线l:x=﹣将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(1)求椭圆C的方程;
(2)求的取值范围.

已知数列{an}中,a1=1,an>0,an+1是函数f(x)=x3+的极小值点.
(1)证明数列{an}为等比数列,并求出通项公式an
(2)设bn=nan2,数列{bn}的前n项和为Sn,求证:

某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如右表所示:已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润.
(1)求上表中的a,b值;
(2)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率P(A);
(3)求η的分布列及数学期望Eη.

如图,四棱锥P﹣ABCD的底边ABCD为直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE∥平面PAD;
(2)若BE⊥平面PCD,求平面EBD与平面CBD夹角的余弦值.

已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC﹣sin(B﹣C)的值;(2)若a=2,求△ABC周长的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号