12月30日晚上,高二年级举行2011年元旦“师生红歌会”,某班有4名老师和4名学生站成一排。
(1)全部站成一排,共有多少种不同的排法?(要求用数字作答)
(2)全部站成一排,4名学生必须排在一起,共有多少种不同的排法?
(要求用数字作答)
(3)全部站成一排,任两名学生都不能相邻,共有多少种不同的排法?(要求用数字作答)
(本小题满分10分)
如图:、
是单位圆
上的点,
是圆与
轴正半轴的交点,三角形
为正三角形,且AB∥
轴.
(1)求的三个三角函数值;
(2)求及
.
设数列满足:
是整数,且
是关于x的方程
的根.
(1)若且n≥2时,
求数列{an}的前100项和S100;
(2)若且
求数列
的通项公式.
已知⊙和点
.
(Ⅰ)过点向⊙
引切线
,求直线
的方程;
(Ⅱ)求以点为圆心,且被直线
截得的弦长为4的⊙
的方程;
(Ⅲ)设为(Ⅱ)中⊙
上任一点,过点
向⊙
引切线,切点为
. 试探究:平面内是否存在一定点
,使得
为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.
设二次函数满足下列条件:
①当时,
的最小值为0,且
恒成立;
②当时,
恒成立.
(I)求的值;
(Ⅱ)求的解析式;
(Ⅲ)求最大的实数m(m>1),使得存在实数t,只要当时,就有
成立
建造一条防洪堤,其断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为
平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长(梯形的上底线段
与两腰长的和)要最小.
(1)求外周长的最小值,并求外周长最小时防洪堤高h为多少米?
(2)如防洪堤的高限制在的范围内,外周长最小为多少米?