(本小题满分12分)
某企业科研课题组计划投资研发一种新产品,根据分析和预测,能获得10万元~1000万元的投资收益.企业拟制定方案对课题组进行奖励,奖励方案为:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y= f(x)模拟这一奖励方案.
(Ⅰ)试写出模拟函数y= f(x)所满足的条件;
(Ⅱ)试分析函数模型y= 4lgx-3是否符合奖励方案的要求?并说明你的理由.
(本小题12分)某校设计了一个实验学科的实验考察方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。规定:至少正确完成其中2题的便可通过考察,已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响。求:
(1)分别写出甲、乙两个考生正确分析完成题数的概率分布列;
(2)分析哪个考生通过考察的概率较大?
(本小题12分)已知是
的三个内角,向量
,且
.
(1)求角;
(2)若,求
.
(本题12分) 已知函数。
若函数在
上是增函数,求正实数
的取值范围;
(1)当时,求函数
在
上的最大值和最小值;
(2)当时,证明:对任意的正整数
,不等式
都成立。
(本题 12分).过点A(-4,0)向椭圆引两条切线,切点分别为B,C,且
为正三角形.
(Ⅰ)求最大时椭圆的方程;
(Ⅱ)对(Ⅰ)中的椭圆,若其左焦点为,过
的直线
与
轴交于点
,与椭圆的一个交点为
,且
求直线
的方程
(本题 12分)已知数列,
满足
,数列
的前
项和为
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:;