(本小题满分16分)
如图,椭圆
过点
,其左、右焦点分别为
,离心率
,
是椭圆右准线上的两个动点,且
.
(1)求椭圆的方程;
(2)求
的最小值;
(3)以
为直径的圆
是否过定点?
请证明你的结论.
已知两直线
,当
为何值时,
与
(1)相交;(2)平行;(3)重合?
(本小题满分16分)已知函数
是奇函数
.
(Ⅰ)求实数
的值;
(Ⅱ)试判断函数
在(
,
)上的单调性,并
证明你的结论;
(Ⅲ)若对任意的
,不
等式
恒成立,求实数
的取值范围.
(本小题满分16分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
(本小题满分15分)已知函数
,
的最大值是1,其图像经过点
.
(1)求
的解析式;
(2)已知
,且
,
,求
的值.
(本小题满分15分)
已知函数
在区间
上的值域为
(1)求
的值
(2)若关于
的函数
在
上为单调函数,求
的取值范围