本题满分13分)
某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(
为常数,且
,设该食品厂每公斤蘑菇的出厂价为
元(
),根据市场调查,销售量
与
成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.
(Ⅰ)求该工厂的每日利润元与每公斤蘑菇
的出厂价
元的函数关系式;
(Ⅱ)若,当每公斤蘑菇的出厂价
为多少元时,该工厂的利润
最大,并求最大值.
(本小题满分13分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.
(Ⅰ)求证:AD⊥平面SBC;
(Ⅱ)试在SB上找一点E,使得平面ABS⊥平面ADE,并证明你的结论.
(本小题满分13分)
为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
(Ⅰ)第二小组的频率是多少?样本容量是多少?
(Ⅱ)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(Ⅲ)在这次测试中,学生跳绳次数的中位数、众数各是是多少?(精确到0.1)
已知函数,
,设
.
(1)求的单调区间;
(2)若以图象上任意一点
为切点的切线的斜率
恒成立,求实数的最小值.
(3)是否存在实数,使得函数
的图象与
的图
象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由.
已知椭圆.过点
作圆
的切线
交椭圆
于
,
两点.
(1)求椭圆的焦点坐标和离心率;
(2)将表示为
的函数,并求
的最大值.
如图,等边与直角梯形
垂直,
,
,
,
.若
分别为
的中点.
(1)求的值; (2)求面
与面
所成的二面角大小.