( (本题满分12分)
在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知
只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功,每次射击命中率都是.,每次命中与否互相独立.
(1)求油罐被引爆的概率。
(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望。
已知n∈N*,数列{dn}满足dn=,数列{an}满足an=d1+d2+d3+…+d2n.又知数列{bn}中,b1=2,且对任意正整数m,n,
.
(1)求数列{an}和数列{bn}的通项公式;
(2)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2013项和T2013.
数列{an}的前n项和为Sn=2an-2,数列{bn}是首项为a1,公差不为零的等差数列,且b1,b3,b11成等比数列.
(1)求数列{an}与{bn}的通项公式;
(2)求证:<5.
已知等比数列{an}的所有项均为正数,首项a1=1,且a4,3a3,a5成等差数列.
(1)求数列{an}的通项公式;
(2)数列{an+1-λan}的前n项和为Sn,若Sn=2n-1(n∈N*),求实数λ的值.
函数f(x)=sin(ωx+φ)ω>0,|φ|<的部分图像如图Z3-4所示,将y=f(x)的图像向右平移
个单位长度后得到函数y=g(x)的图像.
(1)求函数y=g(x)的解析式;
(2)在△ABC中,它的三个内角满足2sin2=gC+
+1,且其外接圆半径R=2,求△ABC的面积的最大值.
如图所示,角A为钝角,且sin A=,点P,Q分别是在角A的两边上不同于点A的动点.
(1)若AP=5,PQ=3,求AQ的长;
(2)若∠APQ=α,∠AQP=β,且cos α=,求sin(2α+β)的值.