( (本题满分12分)
在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知
只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功,每次射击命中率都是.,每次命中与否互相独立.
(1)求油罐被引爆的概率。
(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望。
设函数.
(Ⅰ)讨论函数在
内的单调性并判断有无极值,有极值时求出极值;
(Ⅱ)记,求函数
在
上的最大值D;
(Ⅲ)在(Ⅱ)中,取,求
满足
时的最大值.
设函数,证明:
(Ⅰ)对每个,存在唯一的
,满足
;
(Ⅱ)对任意,由(Ⅰ)中
构成的数列
满足
.
如图,已知两条抛物线和
,过原点
的两条直线
和
,
与
分别交于
两点,
与
分别交于
两点.
(1)证明:
(2)过原点作直线
(异于
,
)与
分别交于
两点.记
与
的面积分别为
与
,求
的值.
如图所示,在多面体,四边形
,
均为正方形,
为
的中点,过
的平面交
于F.
(Ⅰ)证明:;
(Ⅱ)求二面角余弦值.
甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为
,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记为比赛决出胜负时的总局数,求
的分布列和均值(数学期望).