(本小题满分12分)
上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅
油画组合而成的世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如下表所示.
分 组 (单位:岁) |
频数 |
频 率 |
![]() |
5 |
0.050 |
![]() |
① |
0.200 |
![]() |
35 |
② |
![]() |
30 |
0.300 |
![]() |
10 |
0.100 |
合 计 |
100 |
1.00 |
(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,
再根据频率分布直方图估计这507名画师中年龄在
岁的人数(结果取整数);
(2)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深
圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为
,求
的分布列及数学期望.
(本小题满分10分)选修4—5:不等式选讲
已知a+b=1,对,b∈(0,+∞),
+
≥|2x-1|-|x+1|恒成立,
(Ⅰ)求+
的最小值;
(Ⅱ)求x的取值范围。
(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线:
(
为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)将曲线的参数方程化为普通方程,将曲线
的极坐标方程化为直角坐标方程;
(Ⅱ)设为曲线
上的点,点
的极坐标为
,求
中点
到曲线
上的点的距离的最小值.
(本小题满分10分)选修4—1:几何证明选讲
如图,已知与圆
相切于点
,半径
,
交
于点
,
(Ⅰ)求证:;
(Ⅱ)若圆的半径为3,
,求
的长度.
(本小题满分12分)
已知函数.
(1)当时,求
在
最小值;
(2)若存在单调递减区间,求
的取值范围;
(3)求证:(
).
(本小题满分12分)已知椭圆:
的焦距为
,离心率为
,其右焦点为
,过点
作直线交椭圆于另一点
.
(1)若,求
外接圆的方程;
(2)若过点的直线与椭圆
相交于两点
、
,设
为
上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.