:如图,两个工厂相距
,点
为
的中点,现要在以
为圆心,
为半径的圆弧
上的某一点
处建一幢办公楼,其中
.据测算此办公楼受工厂
的“噪音影响度”与距离
的平方成反比,比例系数是1,办公楼受工厂
的“噪音影响度” 与距离
的平方也成反比,比例系数是4,办公楼受
两厂的“总噪音影响度”
是受
两厂“噪音影响度”的和,设
为
.
(Ⅰ)求“总噪音影响度” 关于
的函数关系,并求出该函数的定义域;
(Ⅱ)当为多少时,“总噪音影响度”最小?
已知函数 ,且
(1) 试用含 的代数式表示b,并求 的单调区间;
(2)令 ,设函数 在 处取得极值,记点 , , , ,请仔细观察曲线 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的 ,线段MP与曲线 均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点 , ,使得线段 与曲线 有异于 、 的公共点,请直接写出 的取值范围(不必给出求解过程)
已知A,B 分别为曲线C: 与x轴的左、右两个交点,直线 过点B,且与 轴垂直,S为 上异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧 的三等分点,试求出点S的坐标;
(2)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 ,使得O,M,S三点共线?若存在,求出 的值,若不存在,请说明理由。
如图,某市拟在长为的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段 ,该曲线段为函数 , 的图象,且图象的最高点为 ;赛道的后一部分为折线段 ,为保证参赛运动员的安全,限定
(Ⅰ)求A , 的值和M,P两点间的距离;
(Ⅱ)应如何设计,才能使折线段赛道 最长?
如图,四边形 是边长为 的正方形, , ,且 , 为 的中点.
(1)求异面直线NE与AM所成角的余弦值
(2)在线段AN上是否存在点S,使得 ?若存在,求线段AS的长;若不存在,请说明理由
从集合 的所有非空子集中,等可能地取出一个。
(1)记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;
(2)记所取出的非空子集的元素个数为 ,求 的分布列和数学期望