(本小题满分16分) 已知圆的方程为
,直线
的方程为
,点
在直线
上,过
点作圆
的切线
,切点为
.
(1)若,试求点
的坐标;
(2)若点的坐标为
,过
作直线与圆
交于
两点,当
时,求直线
的方程
(3)经过三点的圆是否经过异于点M的定点,若经过,请求出此定点的坐标;若不经过,请说明理由。
(本小题12分)设等差数列{an}的前n项和为Sn,已知S3=a6,S8=S5+21.
(1)求Sn的表达式;
(2)求证:.
如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60º,又PA⊥底面ABCD,E为BC的中点.
(1)求证:AD⊥PE;
(2)设F是PD的中点,求证:CF∥平面PAE.
盒子中装有形状、大小完全相同的五张卡片,分别标有数字1,2,3,4,5.现从中任意抽出三张.
(1)求三张卡片所标数字之和能被3整除的概率;
(2)求三张卡片所标数字之积为偶数的条件下,三张卡片数字之和为奇数的概率.
在四边形ABCD中,AD⊥CD,AD=5,AB=7,∠BDA=60º,∠CBD=15º,求BC长.
已知函数f(x)=x(x+a)-lnx,其中a为常数.
(1)求f(x)的单调区间;
(2)问过坐标原点可以作几条直线与曲线y=f(x)相切?并说明理由;
(3)若在区间(0,1)内是单调函数,求a的取值范围.