已知函数,其中
.
(Ⅰ)若函数在其定义域内单调递减,求实数
的取值范围;
(Ⅱ)若,且关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围.
已知等差数列{an}的前n项的和记为Sn.如果a4=-12,a8=-4.
(1)求数列{an}的通项公式;(2)求Sn的最小值及其相应的n的值;
(3)从数列{an}中依次取出a1,a2,a4,a8,…,,…,构成一个新的数列{bn},
求{bn}的前n项和
已知是等差数列,其前n项和为Sn,已知
(1)求数列的通项公式;
(2)设,证明
是等比数列,并求其前n项和Tn.
在中,
.
(1)求的值;(2)若
,
,求
和
的值。
某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),
你会选择哪种方式领取报酬呢?
设函数在
及
时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有
成立,求c的取值范围.