、 已知≤
≤1,若函数
在区间[1,3]上的最大值为
,最小值为
,令
.
(1)求的函数表达式;
(2)判断并证明函数在区间[
,1]上的单调性;并求出
的最小值 .
在直角坐标系中,点
到两点
,
的距离之和等于
,设点
的轨迹为
。
(1)求曲线的方程;
(2)过点作两条互相垂直的直线
分别与曲线
交于
和
。
①以线段为直径的圆过能否过坐标原点,若能求出此时的
值,若不能说明理由;
②求四边形面积的取值范围。
设数列的前
项和为
。
(1)证明:为等比数列;
(2)证明:求数列的通项公式;
(3)确定与
的大小关系,并加以证明。
如图,沿等腰直角三角形的中位线
,将平面
折起,使得平面
平面
得到四棱锥
.
(1)求证:平面平面
;
(2)过的中点
的平面
与平面
平行,试求平面
与四棱锥
各个面的交线所围成多边形的面积与三角形
的面积之比。
(3)求二面角的余弦值。
已知函数
(1)求的值;
(2)写出函数函数在上的单调区间和值域。
设 , 是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离 为
对于平面 上给定的不同的两点 , ,
(Ⅰ)若点 是平面 上的点,试证明 ;
(Ⅱ)在平面 上是否存在点 ,同时满足① ;② .若存在,请求出所有符合条件的点;若不存在,请予以证明.