已知抛物线(其中a ≠ c且a ≠0).
(1)求此抛物线与x轴的交点坐标;(用a,c的代数式表示)
(2)若经过此抛物线顶点A的直线与此抛物线的另一个交点为
,
求此抛物线的解析式;
(3)点P在(2)中x轴上方的抛物线上,直线与 y轴的交点为C,若
,求点P的坐标;
(4)若(2)中的二次函数的自变量x在n≤x<(n为正整数)的范围内取值时,记它的整数函数值的个数为N, 则N关于n的函数关系式为 .
已知抛物线 过点 和 ,与 轴交于另一点 ,顶点为 .
(1)求抛物线的解析式,并写出 点的坐标;
(2)如图1, 为线段 上方的抛物线上一点, ,垂足为 , 轴,垂足为 ,交 于点 .当 时,求 的面积;
(3)如图2, 与 的延长线交于点 ,在 轴上方的抛物线上是否存在点 ,使 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图1,已知 , ,点 在 上,连接 并延长交 于点 .
(1)猜想:线段 与 的数量关系为 ;
(2)探究:若将图1的 绕点 顺时针方向旋转,当 小于 时,得到图2,连接 并延长交 于点 ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;
(3)拓展:图1中,过点 作 ,垂足为点 .当 的大小发生变化,其它条件不变时,若 , ,直接写出 的长.
某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元 台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第 天 为整数)的生产成本为 (元 台), 与 的关系如图所示.
(1)若第 天可以生产这种设备 台,则 与 的函数关系式为 , 的取值范围为 ;
(2)第几天时,该企业当天的销售利润最大?最大利润为多少?
(3)求当天销售利润低于10800元的天数.
如图, 为半圆 的直径, 为半圆 上一点, 与过点 的切线垂直,垂足为 , 交半圆 于点 .
(1)求证: 平分 ;
(2)若 ,试判断以 , , , 为顶点的四边形的形状,并说明理由.
已知关于 的一元二次方程 有两个实数根 , .
(1)求 的取值范围;
(2)若 ,求 的值.