(本小题满分12分)
某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示。
(1)求第3、4、5组的频率;
(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少学生进入第二轮面试?
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。
对于函数若存在
,
成立,则称
为
的不动点.已知
(1)当时,求函数
的不动点;
(2)若对任意实数,函数
恒有两个相异的不动点,求
的取值范围.
已知是定义在
上的奇函数,当
时,
.
(1)求;
(2)求的解析式;
(3)若,求区间
.
已知函数是定义在
上的增函数,对于任意的
,都有
,且满足
.
(1)求的值;
(2)求满足的
的取值范围.
记函数的定义域为集合
,函数
的定义域为集合
.
(Ⅰ)求和
;
(Ⅱ)若,求实数
的取值范围.
(满分14分)已知圆O:,直线
.
(1)若直线l与圆O交于不同的两点A,B,当∠AOB=时,求k的值.
(2)若,P是直线l上的动点,过P作圆O的两条切线PC、PD,切点为C、D,探究:直线CD是否过定点;
(3)若EF、GH为圆O:的两条相互垂直的弦,垂足为M(1,
),求四边形EGFH的面积的最大值。