(本小题满分12分)
为了预防春季流感,市防疫部门提供了编号为1,2,3,4 的四种疫苗供市民选择注射,每个人均能从中任选一个编号的疫苗接种,现在甲,乙,丙三人接种疫苗
(I)求三人注射的疫苗编号互不相同的概率
(II)求三人中至少有一人选 1号疫苗的概率
数列的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列
的前
项和
.
如图,在直三棱柱中,
,
,
为
的中点.
(1) 求证:平面
;
(2) 求证:∥平面
.
已知函
为偶函数, 且.
(Ⅰ)求的值;
(Ⅱ)若为三角形
的一个内角,求满足
的
的值.
设椭圆:
的左、右焦点分别为
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
.
(1)求椭圆的离心率;
(2)若过、
、
三点的圆恰好与直线
:
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
、
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由.
动圆与定圆
内切,与定圆
外切,A点坐标为
(1)求动圆
的圆心
的轨迹方程和离心率;(2)若轨迹
上的两点
满足
,求
的值.