设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.(1)求椭圆的离心率;(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.
已知集合,集合. (1)求集合; (2)求集合.
棱柱的所有棱长都为2,,平面⊥平面,. (1)证明:; (2)求锐二面角的平面角的余弦值; (3)在直线上是否存在点,使得∥平面,若存在求出的位置.
如图,已知四边形是边长为1的正方形,⊥平面,⊥平面. (Ⅰ)证明:; (Ⅱ)若,且二面角的大小为,求的长.
如图,三棱锥中,⊥底面,,,为的中点,为的中点,点在上,且. (1)求证:⊥平面; (2)求证:∥平面.
如图,已知四棱锥,底面四边形为菱形,,.分别是线段.的中点. (1)求证:∥平面; (2)求异面直线与所成角的大小.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号