三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分10分)
如图,P,Q是以原点为圆心的单位圆上的两个动点,若它们同时从点A(1,0)出发,沿逆时针方向作匀角速度运动,其角速度分别为(单位:弧度/秒),M为线段PQ的中点,记经过x秒后(其中
),
(I)求的函数解析式;
(II)将图象上的各点均向右平移2个单位长度,得到
的图象,求函数
的单调递减区间.
已知.
(1)当不等式的解集为
时, 求实数
的值;
(2)若对任意实数,
恒成立, 求实数
的取值范围.
求过直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点,且到点P(0,4)的距离为1的直线的方程.
已知二次函数
(Ⅰ)求不等式的解集;
(Ⅱ)若,记
为数列
的前
项和,且
,
),点
在函数
的图像上,求
的表达式.
若圆经过坐标原点和点
,且与直线
相切, 从圆
外一点
向该圆引切线
,
为切点,
(Ⅰ)求圆的方程;
(Ⅱ)已知点,且
, 试判断点
是否总在某一定直线
上,若是,求出
的方程;若不是,请说明理由;
(Ⅲ)若(Ⅱ)中直线与
轴的交点为
,点
是直线
上两动点,且以
为直径的圆
过点
,圆
是否过定点?证明你的结论.
某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为
,当年产量不足80千件时,
(万元).当年产量不小于80千件时,
(万元),每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润(万元)关于年产量
(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?