(本小题满分12分)
为了预防春季流感,市防疫部门提供了编号为1,2,3,4的四种疫苗供市民选择注射,每个人均能从中任选一个编号的疫苗接种,现有甲,乙,丙三人接科苗.
(I )求三人注射的疫苗编号互不相同的概率;
(II)设三人中选择的疫苗编号最大数为,求
的分布列及数学期望.
如图,在正方体中,
为
上不同于
的任一点,
,求证:
(1)平面
;(2)
.
设,
.
(1)当*时,求
的子集的个数;
(2)当且
时,求
的取值范围.
已知函数.
(1)若a=2,解不等式;
(2)若a>1,任意,求实数a的取值范围.
平面直角坐标系中,直线l的参数方程(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为
(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A,B两点,求|AB|.
如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.
(1)求证:△EFG为等腰三角形;
(2)求线段MG的长.