游客
题文

(本小题满分14分)
是定义在上的函数,用分点

将区间任意划分成个小区间,如果存在一个常数,使得和式)恒成立,则称上的有界变差函数.
(1)函数上是否为有界变差函数?请说明理由;
(2)设函数上的单调递减函数,证明:上的有界变差函数;
(3)若定义在上的函数满足:存在常数,使得对于任意的 时,.证明:上的有界变差函数.

科目 数学   题型 解答题   难度 中等
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

(本题16分)已知函数在定义域上单调递增
(1)求的取值范围;
(2)若方程存在整数解,求满足条件的个数

(本题15分)已知函数是定义在上的偶函数,且当时,
(1)写出函数的解析式;
(2)写出函数的增区间;
(3)若函数,求函数的最小值.[来

(本题15分)已知集合,
(1)若,求实数的取值范围;
(2)若,求实数的取值范围.

(本题14分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
(其中x是仪器的月产量).
(1)将利润表示为月产量的函数f(x);
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)

(本题14分)设集合,集合
(1)若,求
(2)若,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号