.(本小题满分14分)已知函数(Ⅰ)求函数的定义域,并证明在定义域上是奇函数;(Ⅱ)若恒成立,求实数的取值范围;(Ⅲ)当时,试比较与的大小关系
已知点,是抛物线的焦点,点在抛物线上移动,当取最小值时,求点的坐标。
求抛物线被点所平分的弦的直线方程。
若点在抛物线上,点在圆上,求的最小值。
已知是上的点,是抛物线的焦点,求证:。
是抛物线上两点,满足(为坐标原点),求证(1)两点的横坐标之积、纵坐标之积分别为定值;(2)直线过一定点。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号