(本小题满分10分)
如图,矩形的两条对角线相交于点
,
边所在直线的方程为
, 点
在
边所在直线上.
(1)求边所在直线的方程;
(2)求矩形外接圆的方程
;
选修4-4坐标系与参数方程
设直线的参数方程为
(t为参数),若以直角坐标系
的
点为极点,
轴为极轴,选择相同的长度单位建立极坐标系,得曲线
的极坐标方程为
=
.
(1)将曲线的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线与曲线
交于A、B两点,求
.
选修4—1:几何证明选讲
在中,
,过点A的直线与其外接圆交于点P,交BC延长线于点D。
(1)求证: ;
(2)若AC=3,求的值。
已知函数,且
.
(1)求的值;
(2)求函数的单调区间;
(3)设函数,若函数
在
上单调递增,求实数
的取值范围.
曲线C上任一点到定点(0,)的距离等于它到定直线
的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且
⊥
,设
是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.
如图,四边形ABCD为梯形,AB∥CD, 平面ABCD,
,
,E为BC中点。
(1)求证:平面平面PDE;
(2)线段PC上是否存在一点F,使PA//平面BDF?若存在,请找出具体位置,并进行证明;若不存在,请分析说明理由.