(本小题满分12分)
已知函数,其中
为常数。
(1)当时,
>
恒成立,求
的取值范围;
(2)求的单调区间。
(本小题满分13分)若向量其中
,记函数
,若函数
的图像与直线
(
为常数)相切,并且切点的横坐标依次成公差为
的等差数列.
(1)求的表达式及
的值;
(2)将函数的图像向左平移
,得到
的图像,当
时,
与
图象的交点横坐标成等比数列,求钝角
的值.
(本小题满分13分)在平面直角坐标系中,角,
的始边为
轴的非负半轴,点
在角
的终边上,点
在角
的终边上,且
.
(1)求;
(2)求的坐标并求
的值.
(本小题满分13分)等差数列满足
,
,数列
的前
项和为
,且
,求数列
和
的通项公式.
本题共14分)已知函数。
(1)求的定义域;
(2)判定的奇偶性;
(3)是否存在实数,使得
的定义域为
时,值域为
?若存在,求出实数
的取值范围;若不存在,请说明理由。
(本题共13分)已知函数在
上满足
,且当
时,
。
(1)求、
的值;
(2)判定的单调性;
(3)若对任意x恒成立,求实数
的取值范围。