随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.
(Ⅰ)求的分布列;
(Ⅱ)求1件产品的平均利润(即的数学期望);
(Ⅲ)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为
.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
某种食品是经过、
、
三道工序加工而成的,
、
、
工序的产品合格率分别为
、
、
.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.
(1)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;
(2)设为加工工序中产品合格的次数,求
的分布列和数学期望.
如图一,平面四边形关于直线
对称,
.把
沿
折起(如图二),使二面角
的余弦值等于
.对于图二,完成以下各小题:
(1)求两点间的距离;
(2)证明:平面
;
(3)求直线与平面
所成角的正弦值.
已知向量(
为常数且
),函数
在
上的最大值为
.
(1)求实数的值;
(2)把函数的图象向右平移
个单位,可得函数
的图象,若
在
上为增函数,求
取最大值时的单调增区间.
等比数列中,已知
.
(1)求数列的通项公式;
(2)若分别为等差数列
的第3项和第5项,试求数列
的通项公式及前
项和
.
已知函数,
(1)求函数的单调区间;
(2)在区间内存在
,使不等式
成立,求
的取值范围.