游客
题文

(本小题满分14分)
为了进一步实现节能,在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外
墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热
层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)。与隔热层
厚度x(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元;设f(x)为
隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数,
(1)求函数上的最小值;
(2)若存在是自然对数的底数,,使不等式成立,求实数的取值范围.

如图,在四棱锥中,底面是矩形,平面,于点

(1) 求证:
(2) 求直线与平面所成的角的余弦值.

已知各项均不相等的等差数列的前四项和成等比.
(1)求数列的通项公式;
(2)设,若恒成立,求实数的最大值.

中,内角的对边分别为,且
(1)求角的大小;
(2)若,求的面积.

已知函数),其中
(1)若曲线在点处相交且有相同的切线,求的值;
(2)设,若对于任意的,函数在区间上的值恒为负数,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号