已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2;且
点在椭圆C上.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A、B两点,且△AF2B的面积为,求以F2为圆
心且与直线l相切的圆的方程.
如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有二条的为第二层, ,依次类推.现有一颗小弹子从第一层的通道里向下运动,若在通道的分叉处,小弹子以相同的概率落入每个通道.记小弹子落入第层第
个竖直通道(从左至右)的概率为
,某研究性学习小组经探究发现小弹子落入第
层的第
个通道的次数服从二项分布,请你解决下列问题.
(Ⅰ)试求及
的值,并猜想
的表达式;(不必证明)
(Ⅱ)设小弹子落入第6层第个竖直通道得到分数为
,其中
,试求
的分布列及数学期望.
如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱
,
为
中点,
为
中点,
为
上一个动点.
(Ⅰ)确定点的位置,使得
;
(Ⅱ)当时,求二面角
的平面角余弦值.
已知等差数列的首项
,公差
.且
分别是等比数列
的
.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)设数列对任意自然数
均有
成立,求
的值.
已知A、B、C为的三个内角且向量
与
共线.
(Ⅰ)求角C的大小;
(Ⅱ)设角的对边分别是
,且满足
,试判断
的形状.
设.
(1)解不等式;
(2)若对任意实数,
恒成立,求实数a的取值范围.