已知椭圆:的离心率为,且过点,设椭圆的右准线与轴的交点为,椭圆的上顶点为,直线被以原点为圆心的圆所截得的弦长为.⑴求椭圆的方程及圆的方程;⑵若是准线上纵坐标为的点,求证:存在一个异于的点,对于圆上任意一点,有为定值;且当在直线上运动时,点在一个定圆上.
设f(x)=lg,如果当x∈(-∞,1]时f(x)有意义,求实数a的取值范围。
△ABC中,求证:cosA·cosB·cosC≤。
若(z-x)-4(x-y)(y-z)=0,求证:x、y、z成等差数列。
已知△ABC三内角A、B、C的大小成等差数列,且tgA·tgC=2+,又知顶点C的对边c上的高等于4,求△ABC的三边a、b、c及三内角。
设等差数列{a}的前n项的和为S,已知a=12,S>0,S<0 。 ①.求公差d的取值范围; ②.指出S、S、…、S中哪一个值最大,并说明理由。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号