(本小题14分)已知点,直线
,
为平面上的动点,过点
作直线
的垂线,垂足为点
,且
.
(1)求动点的轨迹
的方程;
(2)轨迹上是否存在一点
使得过
的切线
与直线
平行?若存在,求出
的方程,并求出它与
的距离;若不存在,请说明理由.
为赢的2010年上海世博会的制高点,某商家最近进行了新科技产品的市场分析,调查显示,新产品每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
)的平方成正比,已知商品单价降低2万元时,一星期多卖出24件.
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
设数列的前
项和为
,且
;数列
为等差数列,且
。
(1)求数列的通项公式;
(2)若为数列
的前
项和,求证:
。
已知函数定义域为
(
),设
.
(Ⅰ)试确定的取值范围,使得函数
在
上为单调函数;
(Ⅱ)求证:;
(Ⅲ)求证:对于任意的,总存在
,满足
,并确定这样的
的个数.
某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用;
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.