已知是等差数列,
是各项为正
数的等比数列,且
,
,
.
⑴求通项公式和
;
⑵若,求数列
的前
项和
.
(本小题满分12分)
如图所示,某市准备在一个湖泊的一侧修建一条直路OC;另一侧修建一条观光大道,它的前一段OD是以O为顶点,x轴为对称轴,开口向右的抛物线的一部分,后一段DBC是函数时的图象,图象的最高点为
,垂足为F。
(I)求函数的解析式;
(II)若在湖泊内修建如图所示的矩形水上乐园PMFE,问点P落在曲线OD上何处时,水上乐园的面积最大?
.(本小题满分12分)
将如图1的直角梯形ABEF(图中数字表示对应线段的长度)沿直线CD折成直二面角,连结部分线段后围成一个空间几何体,如图2所示。
(I)证明:直线BE//平面ADF;
(II)求面FBE与面ABCD所成角的正切值。
(本小题满分12分)
在ABC中,
所对的边分别为a、b、c,且满足
(I)求a的值;(II)求的值。
(本小题满分12分)
已知数列是等比数列,
为其前n项和。
(I)设,求
;
(II)若成等差数列,证明
也成等差数列。
求与圆外切且与直线
相切于点
的圆的方程.