(本小题满分12分)(文科做前两问;理科全做.)
某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.
(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
已知函数f(x)=ax3+(a-2)x+c的图象如图所示.
(1)求函数y=f(x)的解析式;
(2)若g(x)=-2ln x在其定义域内为增函数,求实数k的取值范围.
设L为曲线C:y=在点(1,0)处的切线.
(1)求L的方程;
(2)证明:除切点(1,0)之外,曲线C在直线L的下方.
已知函数f(x)=2x+k·2-x,k∈R.
(1)若函数f(x)为奇函数,求实数k的值;
(2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数k的取值范围.
已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=x2-x+
,0≤x≤3}.
(1)若A∩B=∅,求a的取值范围;
(2)当a取使不等式x2+1≥ax恒成立的a的最小值时,求(∁RA)∩B.
某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)
运行次数n |
输出y的值 为1的频数 |
输出y的值 为2的频数 |
输出y的值 为3的频数 |
30 |
14 |
6 |
10 |
… |
… |
… |
… |
2 100 |
1 027 |
376 |
697 |
乙的频数统计表(部分)
运行次数n |
输出y的值 为1的频数 |
输出y的值 为2的频数 |
输出y的值 为3的频数 |
30 |
12 |
11 |
7 |
… |
… |
… |
… |
2 100 |
1 051 |
696 |
353 |
当n=2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;
(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.