(.(本小题满分12分)
在平面直角坐标系中,为坐标原点,给定两点
,
,点C满足
,其中
且
。
(1)求点C的轨迹方程;
(2)设点C的轨迹与双曲线(
且
)交于M、N两点,且以MN为直径的圆过原点,求证:
为定值;
(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围。
点P是圆上的一个动点,过点P作PD垂直于
轴,垂足为D,Q为线段PD的中点。
(1)求点Q的轨迹方程。
(2)已知点M(1,1)为上述所求方程的图形内一点,过点M作弦AB,若点M恰为弦AB的中点,求直线AB的方程。
已知等差数列的前四项和为10,且
成等比数列
(1)求通项公式
(2)设,求数列
的前
项和
。
(1)若,求
的最大值。
(2)为何值时,直线
和曲线
有两个公共点。
已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点
,又知直线
与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.
如图,四面体ABCD中,O、E分别是BD、BC的中点
(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。