已知椭圆C的中心在原点,焦点在轴上,椭圆上的点到左、右焦点
的距离之和为
,离心率
.
(1)求椭圆C的方程;
(2)过左焦点的直线
与椭圆C交于点
,以
为邻边作平行四边形
,求该平行四边形对角线
的长度的取值范围.
某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度(单位:毫克/立方米)随着时间
(单位:天)变化的函数关系式近似为
,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.
(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?
(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒个单位的去污剂,要使接下来的4天中能够持续有效去污,试求
的最小值(精确到
,参考数据:
取
).
已知二次函数.
(Ⅰ)若且函数
的值域为
求函数
的解析式;
(Ⅱ)若且函数
在
上有两个零点,求
的取值范围.
已知函数.
(Ⅰ)若函数的图象在
处的切线方程为
求
的值;
(Ⅱ)若函数在
上是增函数,求实数
的最大值.
设命题:函数
在
上是增函数,命题
:
,如果
是假命题,
是真命题,求
的取值范围.
已知集合,
,
.
(Ⅰ)求集合;
(Ⅱ)若,求实数
的取值范围.