.(本小题12分)
设函数
(1)讨论函数的单调性;
(2)求函数在
上的最大值和最小值。
已知函数,
.
(1)求的极值点;
(2)对任意的,记
在
上的最小值为
,求
的最小值.
已知数列的各项都是正数,且对任意
都有
,其中
为数列
的前
项和.
(1)求、
;
(2)求数列的通项公式;
(3)设,对任意的
,都有
恒成立,求实数
的取值范围.
如图,在三棱柱中,四边形
为菱形,
,四边形
为矩形,若
,
,
.
(1)求证:平面
;
(2)求证:面
;
(3)求三棱锥的体积.
城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的名候车乘客中随机抽取
人,将他们的候车时间作为样本分成
组,如下表所示(单位:min):
组别 |
候车时间 |
人数 |
一 |
![]() |
![]() |
二 |
![]() |
![]() |
三 |
![]() |
![]() |
四 |
![]() |
![]() |
五 |
![]() |
![]() |
(1)求这名乘客的平均候车时间;
(2)估计这名乘客中候车时间少于
分钟的人数;
(3)若从上表第三、四组的人中选
人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
已知,
.
(1)求的值;
(2)当时,求
的最值.