(本小题满分12分)
某班t名学生在2011年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组
[120,130],下表是按上述分组方法得到的频率分布表:
分组 |
频数 |
频率 |
[80,90) |
x |
0.04 |
![]() |
9 |
y |
[100,110) |
z |
0.38 |
[110,120) |
17 |
0.34 |
[120,130] |
3 |
0.06 |
(Ⅰ) 求t及分布表中x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件
“|m—n|≤10”的概率.
(本小题15分)已知函数(
(1)若函数在
处有极值为
,求
的值;
(2)若对任意,
在
上单调递增,求
的最小值.
(本小题14分)如图,三棱锥中,
平面
,
,
,
分别是
上
的动点,且平面
,二面角
为
.
(1)求证:平面
;
(2)若,求直线
与平面
所成角的余弦值.
(本小题14分)数列
中,
,
(k≠0)对任意
成立,令
,且
是等比数列.
(1)求实数
的值;(2)求数列
的通项公式.
(本小题14分)已知中,
的对边分别为
,且
,
.(1)若
,求边
的大小;(2)求
边上高的最大值.
(本小题满分12分)
如图,在棱长为1的正方体中,
是侧棱
上的一点,
.
(1)试确定,使直线
与平面
所成角的正切值为;
(2)在线段上是否存在一个定点
,
使得对任意的,
在平面
上
的射影垂直于,并证明你的结论.