某种产品的广告费用支出万元与销售额
万元之间有如下的对应
数据:
![]() |
2 |
4 |
5 |
6 |
8 |
![]() |
20 |
30 |
50 |
50 |
70 |
(1)画出上表数据的散点图;
(2)根据上表提供的数据,求出y关于x的线性回归方程;
(3)据此估计广告费用为10万元时,所得的销售收入.
(参考数值: ,
,)
如图,是半圆
的直径,
是半圆
上除
、
外的一个动点,
垂直于半圆
所在的平面,
∥
,
,
,
.
⑴证明:平面平面
;
⑵当三棱锥体积最大时,求二面角
的余弦值.
某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:
奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.
(Ⅰ)求1名顾客摸球3次停止摸奖的概率;
(Ⅱ)记为1名顾客摸奖获得的奖金数额,求随机变量
的分布列和数学期望.
已知为坐标原点,对于函数
,称向量
为函数
的伴随向量,同时称函数
为向量
的伴随函数.
(Ⅰ)设函数,试求
的伴随向量
的模;
(Ⅱ)记的伴随函数为
,求使得关于
的方程
在
内恒有两个不相等实数解的实数的取值范围.
(I)试证明柯西不等式:
(II)已知,且
,求
的最小值.
已知曲线的极坐标方程是
,直线的参数方程是
(为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)设直线与轴的交点是
,
是曲线
上一动点,求
的最大值.