(本小题满分10分)选修4—4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点, 直线(参数
)与曲线
的极坐标方程为
(Ⅰ)求直线l与曲线C的普通方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,证明:0.
(
(本小题满分12分)
已知在区间[0,1]上是增函数,在区间
上是减函数,又
(Ⅰ)求的解析式;
(Ⅱ)若在区间(m>0)上恒有
≤x成立,求m的取值范围.
(
(本小题满分12分)
已知数列中,
,且当
时,函数
取得极值。
(Ⅰ)求数列的通项公式;
(Ⅱ)数列满足:
,
,证明:
是等差数列,并求数列
的通项公式通
项及前
项和
.
(
已知长方体ABCD-中,棱AB=BC=3,
=4,连结
, 在
上有点E,使得
⊥平面EBD ,BE交
于F.
(1)求ED与平面所成角的大小;
(2)求二面角E-BD-C的大小.
(本小题满分12分)
栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为,
,移栽后成活的概率分别为
,
.
(1)求甲、乙两种果树至少有一种果树成苗的概率;
(2)求恰好有一种果树能培育成苗且移栽成活的概率.
(本小题满分10分)
在中
,已知内角
,边
.设内角
,周长为
.
(1)求函数的解析式和定义域;
(2)求的最大值.