(
已知长方体ABCD-中,棱AB=BC=3,
=4,连结
, 在
上有点E,使得
⊥平面EBD ,BE交
于F.
(1)求ED与平面所成角的大小;
(2)求二面角E-BD-C的大小.
已知等差数列满足前2项的和为5,前6项的和为3.
(1)求数列的通项公式;
(2)设,求数列
的前
项和
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足
(I)求角B的大小;
(II)若b是a和c的等比中项,求△ABC的面积。
已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程。
设函数处取得极值
(1)求常数a的值;
(2)求在R上的单调区间;
(3)求在
。
15分)已知正方体ABCD-A1B1C1D1, O是底ABCD对角线的交点.
求证:(1)//面A1B1D1;
(2)A1C⊥面AB1D1;
(3)求。