((本小题满分12分)已知圆C:x2+(y-1)2 =5,直线l:mx-y+l-m=0,(1)求证:对任意,直线l与圆C总有两个不同的交点。(2)设l与圆C交于A、B两点,若| AB | = ,求l的倾斜角;(3)求弦AB的中点M的轨迹方程;
已知,函数,当时,的值域为. (1)求的值; (2)设,,求的单调区间.
已知的终边经过点,求下列各式的值: (1) (2)
已知抛物线的焦点是F,点P是抛物线上的动点,又有点A(3,2),求最小值,并求此时P点的坐标
已知 (1)若,求的极小值; (2)是否存在实数使的最小值为3.
直线与抛物线交于不同的两点P、Q,若PQ中点的横坐标是2. (1)求的值; (2)求弦的长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号