(本小题满分12分)如图,椭圆的离心率为
,直线
和
所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点
与矩形ABCD有两个不同的交点
.求
的最大值及取得最大值时m的值.
(本题12分)某公司是专门生产健身产品的企业,第一批产品上市销售40天内全部售完,该公司对第一批产品
上市后的市场销售进行调研,结果如图(1)、(2)所示.其中(1)的抛物线表示的是市场的日销售量与上市时间的关系;(2)的折线表示的是每件产品
的销售利润与上市时间的关系.
(1)写出市场的日销售量与第一批产品A上市时间t的关系式;
(2)第一批产品A上市后的第几天,这家公司日销售利润最大,最大利润是多少?
(本题12分)
设命题P:函数在区间[-1,1]上单调递减;命题q:函数
的值域是R.如果命题p或q为真命题,p且q为假命题,求a的取值范围.
(本题12分)
已知函数。
(1)求的最小正周期;
(2)若将的图象按向量
=(
,0)平移得到函数g(x)的图象,求函数g(x)在区间
上的最大值和最小值。
(本小题14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)已知,若函数
的图象总在直线
的下方,求
的取值范围;
(Ⅲ)记为函数
的导函数.若
,试问:在区间
上是否存在
(
)个正数
…
,使得
成立?请证明你的结论.
(本小题12分)椭圆:
的两个焦点为
,点
在椭圆
上,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过圆
的圆心,交椭圆
于
两点,且
关于点
对称,求直线
的方程。