(本小题满分12分)
某学校要用鲜花布置花圃中五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.
(1)当区域同时用红色鲜花时,求布置花圃的不同方法的种数;
(2)求恰有两个区域用红色鲜花的概率;
(3)记为花圃中用红色鲜花布置的区域的个数,求随机变量
的分布列及其数学期望
.
在中,角
、
、
的对边分别为
、
、
,且
,
.
(Ⅰ)求的值;
(Ⅱ)设函数,求
的值.
设无穷等比数列的公比为q,且
,
表示不超过实数
的最大整数(如
),记
,数列
的前
项和为
,数列
的前
项和为
.
(Ⅰ)若,求
;
(Ⅱ)证明: (
)的充分必要条件为
;
(Ⅲ)若对于任意不超过的正整数n,都有
,证明:
.
已知是抛物线
上的两个点,点
的坐标为
,直线
的斜率为
.设抛物线
的焦点在直线
的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且,过
两点分别作W的切线,记两切线的交点为
. 判断四边形
是否为梯形,并说明理由.
已知函数,其中
是自然对数的底数,
.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,求函数
的最小值.
如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求证:平面BDGH//平面AEF;
(Ⅲ)求多面体ABCDEF的体积.