(本小题12分)袋中有大小、形状相同的红、黑球各两个,现依次不放回地随机取3次,每次取一个球.(1)试问:一共有多少种不同的结果,请列出所有可能的结果;(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.
设f(x)=. (1)证明:f(x)在其定义域上的单调性; (2)证明: 方程f-1(x)=0有惟一解; (3)解不等式f[x(x-)]<.
设a为实数,函数f(x)=x2+|x-a|+1,x∈R. (1)讨论f(x)的奇偶性;(2)求f(x)的最小值.
(本题满分12分) 求两对称轴与坐标轴重合,离心率e=0.8,焦点到相应准线的距离等于的椭圆方程.
(本题满分12分) 设不等式对于满足的一切m的值都成立,求x的取值范围.
(本题满分12分) 已知圆的方程是,直线过点P() (1)当与圆有公共点时,求直线的倾斜角的范围. (2)设与圆交于A,B两点,求弦AB的中点轨迹的长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号