在四棱锥,
平面
,
,
,
,
.
(1)求证:平面平面
;
(2)当点到平面
的距离为
时,求二面角
的余弦值;
(3)当为何值时,点
在平面
内的射影
恰好是
的重心.
(本小题满分10分,矩阵与变换)
已知矩阵,矩阵
,直线
经矩阵
所对应的变换得到直线
,直线
又经矩阵
所对应的变换得到直线
.
(1)求的值;(2)求直线
的方程.
(本小题满分10分,几何证明选讲)
如图,是圆
的切线,切点为
,
是过圆心的割线且交圆
于
点,过
作
的切线交
于点
.
求证:(1);(2)
.
己知,其中常数
.
(1)当时,求函数
的极值;
(2)若函数有两个零点
,求证:
;
(3)求证:.
已知,
,
都是各项不为零的数列,且满足
,
,其中
是数列
的前
项和,
是公差为
的等差数列.
(1)若数列是常数列,
,
,求数列
的通项公式;
(2)若(
是不为零的常数),求证:数列
是等差数列;
(3)若(
为常数,
),
,求证:对任意的
,数列
单调递减.
如图,在平面直角坐标系中,椭圆
的左顶点为
,与
轴平行的直线与椭圆
交于
、
两点,过
、
两点且分别与直线
、
垂直的直线相交于点
.已知椭圆
的离心率为
,右焦点到右准线的距离为
.
(1)求椭圆的标准方程;
(2)证明点在一条定直线上运动,并求出该直线的方程;
(3)求面积的最大值.