(本小题满分10分,几何证明选讲)
如图,是圆
的切线,切点为
,
是过圆心的割线且交圆
于
点,过
作
的切线交
于点
.
求证:(1);(2)
.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若在
上恒成立,求实数
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意的,求证:
.
已知离心率为的椭圆
的右焦点
是圆
的圆心,过椭圆上的动点
作圆的两条切线分别交
轴于
(与
点不重合)两点.
(Ⅰ)求椭圆方程;
(Ⅱ)求线段长的最大值,并求此时点
的坐标.
如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,.
(Ⅰ)证明:平面ADE⊥平面ACD;
(Ⅱ)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.
某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:
假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中的a的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,
,试比较
与
的大小;(只需写出结论)
(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(Ⅲ)记X表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求X的数学期望.
在中,角
的对边分别为
,向量
,向量
,且
:
(Ⅰ)求角的大小;
(Ⅱ)设BC中点为D,且:求a+2c的最大值及此时
的面积.