正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角. (1)试判断直线与平面的位置关系,并说明理由; (2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
在中,已知.当动点满足条件时,求动点的轨迹方程.
已知点在椭圆上,,为椭圆的两个焦点,求的取值范围.
过抛物线的焦点作互相垂直的两条直线,分别交准线于两点,又过分别作抛物线对称轴的平行线,交抛物线于两点,求证三点共线.
在椭圆上求一点,使它到左焦点的距离是它到右焦点距离的两倍.
给定双曲线方程,过点能否存在直线.使与所给双曲线交于两点和,且为线段的中点,若存在,求出它的方程;若不存在,请说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号